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PHENIX, F-75005, Paris, France

Supplementary Note 1: Molecular dynamics simulations

In our molecular dynamics (MD) simulations, we consider a system with N water molecules

confined between two graphene sheets. The graphene sheets span the entire simulation box in the

lateral directions, x and y, and we use the periodic boundary conditions in these directions. The

TIP4P/2005 potential1 is employed to model water molecules and the Dreiding force field2 is used

for graphene sheets. The Lennard-Jones (LJ) parameters for cross interactions are determined by

means of the Lorentz–Berthelot mixing rules.3

All the MD simulations are implemented using the open-source code LAMMPS.4 The time in-

tegration is carried out with a time step of 1 fs and the temperature is maintained at 300 K using

the Nosé–Hoover thermostat with a time constant of 0.2 ps. We have checked that the temperature

of the water between the graphene sheets is properly controlled by the thermostat applied in the

reservoirs. The water molecules are maintained rigid using the SHAKE algorithm.5 The LJ inter-

actions are computed using a spherical cut-off 9.8 Å, while long-range Coulomb interactions are

treated with the particle-particle particle-mesh (PPPM) method and applying a slab correction6

to deal with the non-periodicity in the z direction.

The graphene sheets are assumed to be rigid planes in obtaining the data shown in Fig. 2.

The constant normal pressure condition in Fig. 2a is realized by tuning the force acting on the

graphene sheets directly. More precisely, while one of the graphene sheets is completely frozen,

the atoms belonging to the other sheet are constrained such that they move only in the z direction

as a rigid body, and the common force acting on each atom is determined so that the force per

unit surface corresponds to the applied pressure. The data shown in Figs 2b and c are obtained

from the simulations with both graphene sheets being fixed at the specified inter-layer distance h.

The pressure on the graphene is obtained by measuring the force acting on all the atoms in the

graphene sheets.

The size of the graphene sheets for the main data shown in Fig. 2a is S = 3.9 × 4.3 nm2.

As discussed in the main text, the smaller size constrains the system to remain homogeneous,

i.e. it prevents the coexistence between water mono- and bilayers (red-dashed line in Fig. 2a).

To check the effect of larger sizes, we carried out the same simulations for different graphene

sheets. Supplementary Figure 1a shows the data obtained for the sizes S = 7.9 × 8.5 nm2 and

15.7×17.0 nm2, on top of the same data shown in Fig. 2a, which clearly shows essentially identical

results.

The data shown in Figs. 1, 3-5 are obtained with the rigidity of graphene sheets being released.

As mentioned above, we use the Dreiding force field2 for the interaction potential between carbon
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Supplementary Figure 1: a: Inter-layer distance h versus number density ρ, obtained for the
system of water molecules between two rigid graphene sheets of S = 3.9× 4.3 nm2, 7.9× 8.5 nm2,
and 15.7× 17.0 nm2, under a pressure of 1 atm. b: The same diagram for the graphene sheets of
size S = 3.9× 4.3 nm2, obtained using the set of TIP4P/2005 water molecules and Dreiding force
field, the set of TIP4P/2005 water molecules and Amber force field, the set of SPC/E and the
Werder potential, and the set of TIP4P/2005-Flexible water molecules and Dreiding force field.

atoms. The bonds, angles, and dihedrals are defined within each flexible graphene sheets; note

that these are also defined across the periodic boundaries. There is no lateral tension when the

graphene is perfectly planar. The properties of the Dreiding potential have recently been carefully

validated in Supp. Ref. 7. On top of them, the bending rigidity of a single graphene sheet is checked

in the present study, because it plays a critical role in the creation of the dripplon. We measured

the bending energy using stationary molecular simulations. Specifically, we consider a graphene

sheet with a finite width; one end is fixed and a bending moment M (per unit length) is applied to

the other end of the sheet. From the measured curvature κ of the sheet, we compute the bending

rigidity as B = M/κ. We obtained B = 2.2 eV for the bending along the zigzag direction, and

B = 2.1 eV along the armchair direction. The bending rigidity was also evaluated by means of the

MD for vibrating sheets in Supp. Ref. 8, where the same value B = 2.1 eV was reported. Although

the direct experimental measurement of bending stiffness of mono-layer graphene has not been

reported in the literature, these values are in good agreement with the often-cited experimental

value 1.2 eV.9

In the case of flexible graphene, the pressure acting on the sheets is controlled by the water

reservoirs located above and below the graphene sheets, as shown in Fig. 1. Rigid graphene sheets

are placed at each end of the reservoirs. They are used as pistons to control the pressure in the

reservoirs. The homogeneous initial condition, as shown in Fig. 3a, is prepared by running a

simulation while freezing the graphene sheets of small size (typically S = 1.2× 1.3 nm2, to avoid

the bubble formation shown in Fig. 2a) and replicating the equilibrium state to the desired size.

The size of the sheets in Fig. 3a is S = 22.1 × 23.0 nm2. The height of each reservoir is initially

2 nm. The number of atoms in one flexible graphene sheet is 18468, and that of the confined water

molecules is 6156. The total number of water molecules including the reservoirs is 52812.

We checked the effect of the interaction potential of water molecules and carbon atoms. As

described above, in the present paper we use the TIP4P/2005 force field for water molecules1 with

the Dreiding force field2 for the carbon atoms, which has carefully been validated in Supp. Ref. 7.

In addition, for the rigid graphene case, we examined the diagram in Fig. 2a for the combinations

of TIP4P/2005 water molecule with Amber force field,10 SPC/E water molecule11 with the Werder
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Supplementary Figure 2: Free energy per unit area G at several values of ρ; a: TIP4P/2005 water
model with Amber potential for water-carbon interaction (Fig. 2b of the paper), b: SPC/E water
model with Werder potential, and c: TIP4P/2005(Flexible) water model with Dreiding potential.
The reference energy for each value of ρ is chosen such that G = 0 at the local minimum in
h > 0.9 nm.

Supplementary Table 1: Size of dripplons at ρav = 12.53 nm−2 in S = 15.7×17.0 nm2 for different
sets of interaction potentials.

TIP4P/2005 - Dreiding 3.3 nm
TIP4P/2005 - Amber 3.3 nm
SPC/E - Werder 2.4 nm

potential,12 and TIP4P/2005-Flexible water molecule13 with Dreiding force field, which are also

widely used in the literature. The results are compared in Supp. Fig. 1b. The main behavior

of the layered structure of the confined water molecules is unchanged, including the coexistence

of the water mono-layer (with vacancy) and the bi-layer. We carried out further computations

to calculate the free energy G to show that the single- and double-layer structures are stable for

different water models, i.e. SPC/E and TIP4P/2005-Flexible models on top of the TIP4P/2005.

The results are shown in Supp. Fig. 2. Though there are indeed slight quantitative difference,

the important features, i.e. the thermodynamic stability of single and double layer structures

are clearly observed in all cases. The creation of the dripplon is also examined for these sets of

potential. We performed simulations for the setup of the flexible graphene sheets; the flexibility

of graphenes is still described by the Dreiding force field. The obtained radius of the dripplon is

identical with to that obtained with TIP4P/2005 and Amber, but there is a quantitative difference

with the set of SPC/E and Werder potential. Since the cohesion of water molecules plays an

essential role in the creation of a dripplon, the choice of model for water molecules is expected to

result in (slight) quantitative differences. Nevertheless, the fact that the dripplon is indeed created

for all these sets confirms the robustness of the phenomenon.

Supplementary Note 2: Analysis of the spinodal decomposition

The theory of the stability of thin liquid films follows Supp. Refs. 14, 15. As discussed in the

main text, the stationary homogeneous film considered here is hypothetical because the forces

driving the corrugation growth are unbalanced, and therefore the film is unstable. The theory
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predicts the wavelength at which the longitudinal fluctuation grows fastest as:

Λm = 2πξ, (1)

ξ =

(
σ

∂Π/∂h

)1/2

, (2)

with the typical time scale

τm =
24ση

h3
(∂Π/∂h)

−2
, (3)

where σ is the surface tension of the liquid film, Π is the disjoining pressure, h is the film thickness,

and η is the viscosity of the liquid.

We applied this theory to our system and estimated the wavelength corresponding to Supp. Eq. (1)

as Λm = 5.7 nm, using the snapshots at t = 5 ps. The decomposition process observed around ∼ ps

is consistent with the time scale of the order of 10 ps predicted by Supp. Eq. (3). Here, we detail

the procedure for obtaining the scattering intensity function shown in Fig. 3b, to characterize the

growth wavelength of the fluctuation in the spinodal decomposition process. This procedure fol-

lows that used in Supp. Ref. 16 to characterize porous structures. We first visualize the dripplons

in terms of the gap distribution as shown in Supp. Fig. 3a (also in Fig. 3a). Then the binary

images as in Supp. Fig. 3b are generated with the threshold at 9.0 Å, i.e. the dripplon is defined

as the region in which h > 9.0 Å. Let Z(x) be a characteristic function defined for the binary

images, taking the value of unity if x points to the dripplon (black phase), and zero otherwise.17

The two-point correlation function:

Rz(r) = 〈Z(x)Z(x + r)− φ2〉/(φ− φ2), (4)

where r = |r| with r being a lag vector, 〈·〉 denotes averaging and φ = 〈Z(x)〉 is the fraction of

dripplon area. The correlation function depends only on the modulus r of r supposing that the

decomposition process is isotropic. Using the correlation function Rz, the scattering intensity I(q)

is then computed via Fourier transformation as:

I(q) = I0

∫ ∞
0

r2Rz(r)
sin(qr)

qr
dr, (5)

where the constant I0 is a normalizing factor.

We show in Supp. Fig. 3c the correlation function Rz(r) obtained from the binary images for

the three systems: S = 22.1 × 23.0 nm2, 19.7 × 20.4 nm2, and 17.2 × 17.9 nm2 (Supp. Fig. 3b).

We used five images for each size in averaging in Supp. Eq. (4) to have better statistics. The

obtained correlation functions are almost identical for three sizes, meaning that the property of

decomposition process is insensitive to the limited box size in simulations in the range we have

examined. Looking into the details, however, the range of r (limited to < 0.3 × Lx where Lx

is the length of the box in x) for the small size system is not sufficiently large to capture the

decay (r ≤ 5.1 nm for S = 17.2× 17.9 nm2), whereas for the largest system seems sufficient. This

means that, for the smaller system, the characteristic length of the pattern of the image is not

sufficiently small compared with the box size. This slight difference affects the resulting scattering

intensity functions as shown in Supp. Fig. 3d. The wavenumber at the peak is qm = 1.10 nm−1 for

S = 22.1×23.0 nm2, qm = 1.11 nm−1 for 19.7×20.4 nm2, and qm = 1.16 nm−1 for 17.2×17.9 nm2.
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Supplementary Figure 3: a: Distribution of the gap between upper and lower flexible graphene
sheets at t = 5 ps, for three different system sizes. Two images obtained with different initial
configurations are shown for each size. The physical situation is the same as that in Fig. 3a.
b: Binary images corresponding to panel a. c: Two-point correlation function as a function of
distance r, obtained form the binary images. d: Scattering intensity (see Supp. Eq. (5)) as a
function of wavenumber q.

Although the quantitative difference is seen for the smallest size, the value of wavenumber is well

converged for the larger systems, and the effect of the box size is negligible.

Supplementary Note 3: Stabilization against Ostwald ripening

We identified the coarsening of the dripplons in the long-time regime as the Ostwald ripening.

Here we discuss the stabilization using solutes trapped in the dripplon. We follow the discussion in

Supp. Ref. 18. The Helmholtz free energy of a dripplon, a two-dimensional droplet accompanied

by bending graphene sheets, is modeled by

Fd = Fb + γ2πR, (6)

where Fb is the free energy of water in the dripplon, while γ and R are respectively the line tension

along the perimeter and the radius of the dripplon. Differentiating this expression with respect to

the number of molecules results in a chemical potential given by

µd = µb +
γ

ρwR
, (7)
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Supplementary Figure 4: a: Snapshot in the course of coarsening of initially two dripplons with
the trapped solute particles (indicated by the blue circles.) b: the corresponding gap distribution.
This snapshot is at t = 0.86 ns of Video 3.

where ρw is the number density of the water molecules in the dripplon (ρw ≈ 20 nm−2). Now,

solute particles which are only miscible in the droplet phase are considered to be trapped in the

dripplon. Assuming that the trapped species is treated as dilute for simplicity, an additional term

corresponding to the osmotic pressure of the trapped phase contributes to the chemical potential

described above. This is expressed as

∆µ =
1

ρw

[
γ

R
− NskBT

πR2

]
, (8)

where ∆µ = µd − µb, kB is the Boltzmann constant, T is the temperature, and Ns is the number

of solute particles trapped in the dripplon. This means that the osmotic pressure of the trapped

particles given by the second term directly competes with the Laplace-like pressure described by

the first term. Therefore, the equilibrium radius of the dripplon Rs with Ns solute particles is:

Rs = NskBT/(πγ). (9)

Now the radius of the dripplon can also be related to the number of participating water molecules

Nw ∼ ρwπR
2
s. Introducing the molar fraction of solute xs = Ns/(Ns + Nw), we can therefore

rewrite Supp. Eq. (9) as:

Rs =
γ

ρwkBT

1− xs
xs

=
γ

ρskBT
, (10)

with ρs the solute number density.

For typical values ρw ≈ 20 nm−2, γ = 3 × 10−10 J/m and T = 300 K, we obtain for a molar

fraction xs = 10% an equilibrium dripplon radius of Rs ∼ 40 nm, as quoted in the main text.

Therefore, a fully stabilized dripplon cannot be realized with a system size achiveable in molecular

dynamics simulations (S ∼ 20 × 20 nm2). We examined the effect of the solute particles, which

represent large molecules insoluble in the water mono-layer, modeled by the electrically neutral

Lennard-Jones (LJ) particles (the values of the LJ parameters are εLJ = 0.42 kJ/mol, σLJ = 7.0 Å).

The coarsening process shown in Fig. 3c is displayed in Video 3, and a snapshot at t = 0.86 ns is

given in Supp. Fig. 4.
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Supplementary Figure 5: Chemical potential as a function of number density ρ, computed using
the test particle insertion method. The free energy shown in Fig. 4b is obtained by numerically
integrating these data.

Supplementary Note 4: Test particle insertion method

The thermodynamic model of the dripplon described in the main text relies on the local free

energy G of the water molecules confined between two graphene sheets, as a function of the number

density ρ. In the present study, we numerically evaluated the chemical potential µ(ρ) using the

test particle insertion method and obtained the numerical values of the free energy by integrating

µ(ρ). In this section, we detail the implementation of this method (often referred to as the Widom

method19,20).

To access the expression for the chemical potential, we begin with the expression in the statisti-

cal mechanics for the Gibbs free energy of the system of N particles, at pressure P and temperature

T :

G(N,P, T ) = −kBT ln

[∫
dV

V N exp(−βPV )

λ3Nd N !

∫
dsN exp

(
−βU(sN ;V )

)]
, (11)

where kB is the Boltzmann constant, β = 1/kBT , λd =
√
h/(2πmwkBT ) is the thermal de Broglie

wavelength with mw the mass of a particle and h Planck’s constant, and U is the potential energy.

The integrals run over the possible volumes V and the configurations of the N particles (in reduced

coordinates sN ). We then find µ (= (∂G/∂N)PT ) = G(N + 1, P, T )−G(N,P, T ) as

µ = −kBT ln

〈
V

λ3d(N + 1)

∫
dsN+1 exp(−β∆U)

〉
, (12)

= µid + µex, (13)

where µid and µex are the ideal and excess parts of the chemical potential, respectively, defined as

µid = −kBT ln(kBT/Pλ
3
d), (14)

µex = −kBT ln

〈
PV

kBT (N + 1)

∫
dsN+1 exp(−β∆U)

〉
, (15)

and ∆U = U(sN+1)− U(sN ) is the potential energy difference.

The practical procedure to evaluate the excess chemical potential µex using molecular dynamics
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dripplon creation ρav = ρc.

simulation is as follows. We perform an MD simulation for N water molecules between two rigid

graphene sheets at pressure P and temperature T , as described in Supplementary Note 1. Here, we

put an extra water molecule in the system, which does not interact with the other water molecules,

but does with the graphene sheets such that it stays in between. During the simulation, we simply

compute U(sN ), which is exactly the same as that obtained from the normal MD simulation withN

molecules. Using the same trajectory, we also compute the potential energy of the system including

the extra molecule, this time turning on the interaction potential between the extra molecule and

the rest, which corresponds to U(sN+1). We then take the average in Supp. Eq. (15), over the

time series of U(sN+1)− U(sN ) and V .

In obtaining Fig. 4b, we use the systems of small lateral sizes to prevent phase separation

observed in Fig. 2a. Since the number of molecules is small for a small size system, the values of

ρ are limited to a discrete set. Here we use two systems with S = 1.2× 1.3 nm2 and 1.5× 1.3 nm2

to reach a sufficient resolution of ρ, as shown in Supp. Fig. 5. The free energy is then computed

as G(ρ) =
∫ ρ
ρ0
µ(ρ′)dρ′, which is shown in Fig. 4b in the paper.

Supplementary Note 5: Thermodynamic model of a dripplon

In this section, we discuss the solution procedure for the thermodynamic model presented in

the main text. We repeat here the expression of the free energy model for a single dripplon in the

system (see Supp. Fig. 6a):

Gtotal = (S − πR2)G1 + πR2G2 + 2πRγ, (16)

where S is the total area, G1(ρ1) and G2(ρ2) are the free energies per area of the mono- and

bi-layer phases, respectively, and γ is the line tension, i.e. the energy per unit length of the

perimeter of the dripplon. In order to solve the problem analytically, we approximate G1 and G2

by quadratic functions of the density: Gi(ρi) = Ci(ρi−θi)2+bρi+d, as illustrated in Supp. Fig. 6b.

This approximation is reasonable given the numerical free energy as a function of ρ as in Fig. 4b,

and greatly simplifies the analysis of the model. The parameters Ci and θi are identified as

C1 = 33.4 kJ nm2/mol, C2 = 14.6 kJ nm2/mol, θ1 = 10.9 nm−2, and θ2 = 21.5 nm−2. (b and d

disappear in the analysis).

Since the total number of water molecules is fixed at Sρav in our system, we have an additional
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constraint: (S−πR2)ρ1 +πR2ρ2 = ρavS. The radius of the dripplon R is then obtained by means

of the Lagrange multiplier method, minimizing the total free energy Gtotal(ρ1, ρ2, R). Let us define

the following Lagrange function

L(ρ1, ρ2, R) = (S − πR2)G1 + πR2G2 + 2πRγ + λ
[
(S − πR2)ρ1 + πR2ρ2 − ρavS

]
. (17)

The conditions satisfied at the local minimum (maximum) of Gtotal, i.e., ∂L/∂ρi = 0, ∂L/∂R = 0,

and ∂L/∂λ = 0, yield the following equations:

∆Cλ̃2 − 4λ̃∆θ − 4γ/R = 0, (18)

π∆θR2 − π∆Cλ̃R2/2− Sλ̃/(2C1) + (θ1 − ρav)S = 0, (19)

ρ1 = θ1 − λ̃/(2C1), (20)

ρ2 = θ2 − λ̃/(2C2), (21)

where ∆C = 1/C2− 1/C1, ∆θ = θ2− θ1, and λ̃ = λ− b. For a given value of ρav, Supp. Eqs. (18)

and (19) are solved with respect to R by eliminating λ̃. The result of this solution, referred to as

the full model here, is plotted in Fig. 4a in the paper. Note that this model reduces to the lever

rule if we assume no line tension γ = 0:

π∆θR2 + (θ1 − ρav)S = 0, (22)

with λ̃ = 0, ρ1 = θ1, and ρ2 = θ2.

At the onset of the creation of the dripplon, the shape of G1 is expected to play more important

role than that of G2. Hence we attempt to further simplify the model, assuming C2 = C1, or

∆C = 0. Then Supp. Eqs. (18) and (19) reduce to

H(R; ρav) = 2πC1∆θ2R3 + 2C1∆θ(θ1 − ρav)SR+ Sγ = 0. (23)

The behavior of this cubic function H is illustrated in Supp. Fig. 6c; Supp. Eq. (23) has roots

only for ρav > ρc, where the threshold ρc is given by equating the discriminant to zero:

ρc = θ1 +
3

2

(
πγ2

2∆θC2
1S

)1/3

. (24)

With the choice of γ = 6.1 × 10−10 J/m as quoted in the main text, the threshold for Fig. 4a

is ρc = 11.5 nm−2, which perfectly matches the MD data. We show additional data for different

total areas S in Supp. Fig. 7: S = 11.8 × 12.8 nm2, 15.7 × 17.0 nm2, and 19.7 × 21.3 nm2, here

along with the simplified model given by Supp. Eq. (23). We see excellent agreement between the

MD data and the thermodynamic models; the difference between the full model and simplified

one is negligible.

Our thermodynamic model presented given in Supp. Eq. (16) shows no upper bound for the

size of the dripplons, as the radius of the dripplons increases as R ∼ √ρav for large ρav (cf.

Supp. Eq. (22)). In practical situations, however, the size of the numerical box L should remain

larger than the dripplon diameter to avoid finite size effect. As shown in Supp. Fig. 7d, in such

a situation (here for S = 15.7 × 17.0 nm2 and ρav = 14.3 nm−2), the dripplon remains but take

9
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Supplementary Figure 7: Radius of the dripplon R versus average number density ρav, for the
system size of S = 11.8× 12.8 nm2 (a) 15.7× 17.0 nm2 (b) and 19.7× 21.3 nm2 (c). The solid line
indicates the prediction of the full model given in Supp. Eqs. (18) and (19), and the dash-doted
line indicates the simplified model given in Supp. Eq. (23). The prediction of the lever rule is
shown by the dashed line. d: Gap distribution between upper and lower flexible graphene sheets
at ρav = 14.1 and 14.3 nm−2.

a stripe geometry instead of a circular geometry. This is expected in order to minimize the

corresponding line energy in a finite size box.

Supplementary Note 6: Extended data for dripplon dynamics

We show here extended data supplemental to the discussion on the dripplon dynamics. The

diffusion coefficient discussed in Fig. 5 is computed via the two dimensional mean square dis-

placement (MSD) of the dripplon. Specifically, we track the center-of-mass of the water molecules

inside the dripplon, and compute 〈∆r2〉, where ∆r = (∆x2 +∆y2)1/2 is the in-plane displacement.

For each dripplon, we carried out simulations longer than 3× 106 time steps (3 ns), for the system

of S = 15.7 × 17.0 nm2, with 10240 carbon atoms in each flexible graphene sheet and more than

30000 water molecules in total. In addition to the MSD shown in Fig. 5c, we plot in Supp. Fig. 8a

the MSD for five dripplons considered in the inset of Fig. 5c. In the long-time regime (hundreds of

ps), the MSD scales as 〈∆r2〉 ∼ Γtα, with α ≈ 1.3 for all the dripplons. Therefore, the dynamics

of the dripplon exhibits a slight superdiffusive behavior21 as discussed in the main text, rather

than pure Brownian motion. Hence the apparent diffusion coefficients defined as Dapp = Γtα−10 /4

with t0 = 0.2 ps22 are plotted in the inset of Fig. 5c.

On the other hand, the MSD of each confined water molecule inside and outside the dripplon

exhibits a purely Brownian behavior, as quoted in the main text. In Supp. Fig. 8b we plot the (two

dimensional) MSD of water molecules. The long-time behavior shows clear linearity. Thus the

self-diffusion coefficients are obtained from the slope of the MSD as 〈∆r2〉 ∼ 4Dt. The resulting

values D = 2.4 × 10−5 cm2/s inside the dripplon (bi-layer), and 4.2 × 10−5 cm2/s outside the

10



time t (ps) 

M
S

D
 〈∆

r 
2
〉��� (

n
m

2
) 

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

time t (ps) 

M
S

D
 〈∆

r 
2
〉��� (

n
m

2
) 

a b

R = 2.9 nm

3.6 nm

4.6 nm

3.3 nm

4.0 nm

slope=1
slope=1

outside dripplon

 (water monolayer)

inside dripplon

 (water bilayer)

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

Supplementary Figure 8: a: Log-log plot of the MSD of the dripplon as a function of time. The
dotted lines are fits to 〈∆r2〉 ∼ Γtα, with α = 1.3 in the long-time regime. b: Same plot for
individual water molecules inside and outside the dripplon. A line with slope equal to unity is
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Supplementary Figure 9: a: Ratio of water molecules trapped in the dripplon, defined as Rw(t) =
Nw(t)/Nw(0), where Nw(t) is the number of water molecules in the dripplon at t, which have been
staying since t = 0 without crossing the interface. b: Survival probability within the dripplon.
Sw(t) indicates the probability that a water molecule participates in the dripplon for longer than
t (larger than 1 ps).

dripplon (mono-layer) are in good agreement with the reported values for the water mono-layer

and bi-layer.23

We next show the data proving the exchanges of water molecules participating the dripplon.

The plot in Supp. Fig. 9a shows the quantitative counterpart demonstrated in Figs. 5a and b

and Video 4, i.e. the ratio defined as Rw(t) = Nw(t)/Nw(0), where Nw(t) is the number of water

molecules found in the dripplon at t, which remained in the dripplon since t = 0; the molecules

that re-entered in the dripplon are not counted. For the dripplon of R = 2.9 nm, 84 % of water

molecules go out within 1 ns.

In Supp. Fig. 9b we show the survival probability function Sw(t) for the water molecules be-

longing to the dripplon. This is defined such that Sw(t) is the probability that a water molecule

stays in the dripplon longer than t. To numerically evaluate this function, we compute the prob-

ability Pw(t)dt that a water molecule belongs to the dripplon for a time period t, by measuring
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the period for which each water molecule stays inside after entering the dripplon. Here, only the

molecules that stays at least for 1 ps are counted. The survival probability is then computed as

Sw(t) = 1−
∫ t
0
Pw(s)ds. The plot in Supp. Fig. 9b displays a monotonic decay down to less than

3 % at 100 ps. The fact that the survival probability only slightly depends on the radius of the

dripplon indicates the very active exchanges of water molecules near the interface. We remark

that, if the motion of dripplon was pure Brownian diffusion, this survival probability should decay

as t−1/2. This is shown via an argument parallel with the following paragraph on Sc, using the fact

that the water molecules themselves exhibit pure Brownian motion (Supp. Fig. 8b). Therefore

the observed faster decay (∼ t−0.8) of Sw(t) (Supp. Fig. 9b) is an indication of departure from

normal diffusion, on top of the decay of Sc discussed in the main text. Here (and in Fig. 5d of the

main text) the decay rate t−1/2 was checked using a simple simulation of a single disk undergoing

pure Brownian motion on the 2D plane; grid points are fixed on the 2D plane, and the survival

probability was computed by checking whether these grid points are inside or outside the disk.
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